Close menu Resources for... William & Mary
W&M menu close William & Mary

Courses

Spring 2018
  • MATH 150-01: Predictability (Leah Shaw)
  • MATH 352-01,02: Statistical Data Analysis (Heather Sasinowska)
  • MATH 410-02: Data Science: theory and computation (Sarah Day and Laura Storch)
  • MATH 442: Partial Differential Equations (Junping Shi)
  • MATH 451-01,02: Probability & Statistics (Heather Sasinowska, Larry Leemis)
  • MATH 452/552: Mathematical Statistics (Ross Iaci)
  • CSCI 618: Model/Applications Operational Research (Rex Kincaid)
  • CSCI 648: Network Optimization (Anke van Zuylen)
  • CSCI 678: Analysis of Simulation Models (Larry Leemis)
  • CSCI 688-01: Optimization Machine Learning (Anh Ninh)
  • CSCI 688-02: Economic Aspects of Internet (Anke van Zuylen)
  • APSC 450: Computational Neuroscience (Greg Smith)
  • APSC 456: Random Walks in Biology (Leah Shaw)

Spring 2017

  • MATH 150-01: Data-Driven Decision Making (Larry Leemis)
  • MATH 150-02: Predictability (Leah Shaw)
  • MATH 332: Graph Theory & Applications (Gexin Yu)
  • MATH 352: Statistical Data Analysis (Heather Sasinowska)
  • MATH 410-02: Data Science: theory and applications (Chi-Kwong Li and GuanNan Wang)
  • MATH 442: Partial Dierential Equations (Junping Shi)
  • MATH 451: Probability & Statistics (Ross Iaci)
  • MATH 452/552: Mathematical Statistics (GuanNan Wang)
  • CSCI 648: Network Optimization (Anke van Zuylen)
  • CSCI 658: Discrete Optimization (Rex Kincaid)
  • CSCI 688-03: Supply Chain Optimization (Anh Ninh)
  • APSC 450: Computational Neuroscience (Greg Smith)
  • APSC 456: Random Walks in Biology (Leah Shaw)
  • APSC 490: Matroid Theory (Greg Smith)

Fall 2016

  • APSC 210: Predictability (Leah Shaw)
  • MATH 410: Mathematical models in economics (Junping Shi)
  • MATH 410: Computational Dynamics (Sarah Day)
  • MATH 410: Data Analysis (Sarah Day)
  • MATH 410: Applied Linear Algebra (Chi-Kwong Li)
  • MATH 410: Applications of Machine Learning (Daniel McGibney).

Spring 2016

  • MATH 352: Data Analysis (Daniel McGibney)
  • MATH 410-02: Analysis of Big Data  (Gexin Yu, Anh Ninh, Guan-Nan Wang)
  • MATH 451: Probability & Statistics (Hyunchul Park)
  • MATH 452/552: Mathematical Statistics (Ross Iaci)
  • MATH 410-03/CSCI 618: Model/Applications Operation Research (Rex Kincaid)
  • MATH 410-04/CSCI 688-01: Optimization Machine Learning (Anh Ninh)
  • MATH 459/CSCI 688-03: Statistical Data Mining (Guan-Nan Wang)
  • CSCI 688-02: Internet Algorithms & Econ (Anke van Zuylen)

Spring 2015

  • MATH 352: Data Analysis (Daniel McGibney)
  • MATH 410-02: Analysis of Big Data  (Junping Shi and Gexin Yu)
  • MATH 452/552: Mathematical Statistics (Ross Iaci)
  • CSCI 648: Network Optimization (Anke van Zuylen)
  • CSCI 658: Discrete Optimization (Larry Leemis)
  • CSCI 688: Stochastic Optimization (Frans Schalekamp)

Spring 2014

  • MATH 352: Data Analysis (Tanujit Dey)
  • MATH 410-01/CSCI 688-02: Internet Algorithms & Econ (Anke van Zuylen)
  • MATH 410 - 07: Analysis of Big Data  (Tanujit Dey and Junping Shi)
  • MATH 452/552: Mathematical Statistics (Tanujit Dey)
  • CSCI 618: Model/Applications Operation Research (Rex Kincaid)
  • CSCI 678: Analysis of Simulation Models (Larry Leemis)
  • CSCI 688-01: Combinatorial Optimization (Frans Schalekamp)