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Abstract

With the proposal of black hole complementarity as a solution to

the information paradox resulting from the existence of black holes, a

new problem has become apparent. Complementarity requires a vio-

lation of monogamy of entanglement that can be avoided in one of two

ways: a violation of Einstein’s equivalence principle, or a reworking of

Quantum Field Theory [1]. The existence of a barrier of high-energy

quanta - or “firewall” - at the event horizon is the first of these two

resolutions, and this paper aims to discuss it, for Schwarzschild as

well as Kerr and Reissner-Nordström black holes, and to compare it

to alternate proposals.

1 Introduction, Hawking Radiation

While black holes continue to present problems for the physical theories of

today, quite a few steps have been made in the direction of understanding the

physics describing them, and, consequently, in the direction of a consistent

theory of quantum gravity. Two of the most central concepts in the effort

to understand black holes are the black hole information paradox and the

existence of Hawking radiation [2].

Perhaps the most apparent result of black holes (which are a consequence

of general relativity) that disagrees with quantum principles is the possibility

of information loss. Since the only possible direction in which to pass through

the event horizon is in, toward the singularity, it would seem that information
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entering a black hole could never be retrieved. In other words, while one

could predict the evolution of a quantum system involving a black hole in

the forward direction of time, a later state of a black hole could not be used

to calculate the state of the system at some past time: several different past

evolutions could result in identical black holes. This violates the quantum

principle of unitarity [3].

In a 1974 paper, Stephen Hawking theorized that black holes are not

completely black and do in fact emit radiation, resulting from quantum pro-

cesses near the event horizon [2]. Black holes as thermodynamic systems

have temperature, as well as an entropy proportional to their surface area.

The Hawking radiation, which corresponds to thermodynamic blackbody ra-

diation, radiates power P from a chargeless, non-rotating black hole of mass

M given by the Stefan-Boltzman-Schwarzschild-Hawking power law [4]:

P =
h̄c6

15360πG2M2
, (1)

where h̄ is the reduced Planck constant, c is the speed of light in a vacuum,

and G is the gravitational constant. This is effectively the rate of mass

loss, and taking this as a differential equation for the black hole’s mass as

a function of time, one can solve for the time it takes for the black hole to

evaporate:

−c2dM
dt

= P (2)
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−
∫ t

t0

M2dM =

∫ t

t0

h̄c4

15360πG2
dt (3)

−M
3

3
=

h̄c4t

15360πG2
− M3

0

3
(4)

where M0 is the initial mass. Then, setting M = 0 and solving for t gives

tevap =
5120πG2M3

0

h̄c4
. (5)

While this radiation does allow a black hole to dissipate, it was not initially

believed to carry information from the black hole. The information paradox

still stood, but Hawking radiation has played a part in attempting to resolve

this problem.

2 Entanglement and Entropy

The process of Hawking radiation involves the creation of particle-antiparticle

pairs from vacuum fluctuations near the event horizon of a black hole. These

pairs usually proceed to annihilate, but occasionally one of the pair escapes

the gravity of the black hole, being emitted as Hawking radiation, and the

other falls in. Since the total energy of the infalling particle of such a “Hawk-

ing pair” is negative (due to the gravitational field), the black hole loses mass

in this process [2].

This is where entanglement enters the picture. The particle pair created

is analagous to the well-known example of two entangled spin-1
2
particles,
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whose total spin we know is 0, without knowing the individual spins of either

particle until a measurement is preformed on one or the other.

Entanglement is related to the entropy of the quantum system in question,

and the discussion here will become more relevant after a discussion on com-

plementarity in section 3. For now, we develop the concept of subadditivity

of entropy, which is appropriate to the system of a Hawking pair.

First, consider a particle whose state |ψ〉 in the Hilbert spaceH of possible

states for this particle can be given as a linear combination of “pure” states,

or eigenstates |ψi〉:

|ψ〉 =
∑

i

ci |ψi〉. (6)

A particle in a pure state, of course, would have all coefficients but one equal

to 0. The state of this particle has an associated density matrix ρ [5] with

elements (in an orthonormal basis |un〉 of H) given by

ρmn =
∑

i

ci 〈um|ψi〉 〈ψi|un〉. (7)

The fact that the coefficients ci are essentially measures of the probability of

finding the particle in a particular state |ψi〉 leads one to consider an expres-

sion similar to that of the Gibbs entropy in classical statistical mechanics

[6]:

S(ρ) = − tr(ρ ln ρ). (8)

This is the von Neumann entropy, which can also be expressed in terms of
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the coefficients ci as

S = −
∑

i

ci ln ci. (9)

The von Neumann entropy is clearly 0 for pure states, where all ci in the

sum are either 0 or 1.

Now the a quantum expression for entropy has been developed, subaddi-

tivity of entropy can be presented. Given two particles, A and B, with state

vectors for the particles and for the system of both in the Hilbert spaces

HA, HB, and HA ⊗ HB, respectively, the following inequality holds for the

entropies of the three states:

S(ρAB) ≤ S(ρA) + S(ρB). (10)

This is the subadditivity of entropy [7] and it is evidently true in the case

of two entangled spin-1
2
particles. There is no uncertainty in what value a

measurement of the spin of the overall system will return, but neither particle

has a definite spin. Indeed, a situation like this, where the system as a whole

is in a pure state and S(ρAB) = 0, is said to be “maximally entangled”.

Complementarity will now be introduced, after which this section will be

much more relevant in discussing strong subadditivity and the Page time.
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3 Black Hole Complementarity

A proposed resolution of the information paradox is the concept of black hole

complementarity, which can be stated as follows: the observed evolution of

information falling into a black hole is dependent on whether the observation

is in an external frame of reference (that is not falling into the black hole) or

in the frame of reference falling with the information, and these two different

observed outcomes are consistent with each other [3].

In the reference frame of falling into the black hole, the information passes

through the horizon, experiencing ordinary free fall, and eventually reaches

the singularity. On the other hand, in the external frame, gravitational time

dilation effects near the horizon make it appear as if the infalling informa-

tion never reaches the horizon. Instead, it approaches it ever more slowly,

being spread out uniformly over time across a surface at an arbitrarily small

distance outside the horizon. This surface is known as the stretched horizon.

As the infalling information becomes a part of this stretched horizon,

it adds energy to the stretched horizon and heats it up. This then causes

the stretched horizon to emit radiation, which corresponds to the Hawking

radiation discussed in section 1 (see figure 1). This radiation does in fact

carry information away from the black hole.

Each of the two processes described is unitary in its own frame; in other

words, information is lost in neither. A consequence of this theory, however, is

that any quantum of Hawking radiation emitted from a sufficiently old black
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Figure 1: A. Information falling toward a black hole’s event horizon. B. That
information being absorbed into and extended over the stretched horizon in
an external reference frame. C. The information being re-emitted as Hawking
radiation.

hole (one theorized to be roughly past half of its lifetime) must be entangled

with the system of all Hawking radiation that black hole has emitted in the

past [8] (as will be discussed further in section 4). The necessity of this

entanglement presented by complementarity proves to be a problem.

4 Entropy Revisited, the Page Time

While the subadditivity of quantum entropy is helpful in understanding en-

tanglement between two systems, there exists another entropy relation that

involves the entropies three systems. This time the individual Hilbert state

spaces are HA, HB, and HC and there exist also combined state spaces

HA ⊗HB, HA ⊗HC , HB ⊗HC , and HA ⊗HB ⊗HC . The state of each sys-

tem or group of systems in the relevent Hilbert space again has an associated

density matrix, and consequently a von Neumann entropy. A basic principle



8

of quantum information theory is that these entropies satisfy [7]

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). (11)

This is the principle of strong subadditivity of quantum entropy.

A relevent consequence of this inequality is in the case of entanglement

in a system of three particles. If a particle B is maximally entangled with

two independent particle A and C, it follows that S(ρAB) = S(ρBC) = 0.

This cannot be true, however, because S(ρB) > 0; the strong subadditivity

of entropy thus brings us to the concept of monogamy of entanglement. A

particle cannot be simultaneously entangled with two independent systems.

This, along with another quantum property of black hole evaporation, leads

to the firewall theory.

Before the proposal of black hole complementarity, it was theorized that

the quantum entropy of all Hawking radiation emitted by a black hole keeps

increasing as the black hole evaporates, eventually reaching the original en-

tropy of the black hole. This would be a violation of unitarity, however,

and a new model accompanied the theory of complementarity. Instead, the

entropy of the Hawking radiation steadily increases until the so-called Page

time, roughly 54% of the way through the black hole’s lifetime [9]. At that

point, all subsequent radiation (called late radiation) is theorized to be emit-

ted entangled with all previously emitted radiation (or early radiation). The

result is a decline in the entropy of Hawking radiation, and no violation of
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unitarity. A new problem arises from the entanglement, however, and the

theory of the firewall aims to resolve it.

5 The Firewall Resolution

The mechanism that leads to Hawking radiation is the creation of particle-

antiparticle pairs in the vacuum near the event horizon of a black hole; one

member of the pair, with negative energy, falls in, and the other escapes,

causing a loss of mass for the black hole. The two members of each pair

of particles produced this way are entangled with each other. This, com-

bined with the entanglement established in section 4, violates the principle

of monogamy of entanglement. A particle cannot be simultaneously entan-

gled with two independent systems (here, the other particle in the pair and

all past Hawking radiation).

One way to resolve this violation is by allowing for “breaking” of the

entanglement of the particle-antiparticle pair [10]. This releases a significant

amount of energy, and the result is a barrier of high-energy quanta just below

the event horizon of the black hole. This is the theory of the firewall, which is

one of several possible resolutions of the problem raised by complementarity.

Another way of explaining the firewall solution is to consider the entangled

particle-antiparticle pair produced near the horizon. For there to be no more

entanglement between a particle within the horizon and another outside of

it, there must be a significant difference between the quantum fields inside
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and outside. This would imply a quite significant gradient in the quantum

fields at the event horizon of the black hole.

The existence of firewalls, while it would prevent the forbidden double

entanglement of late Hawking radiation, would also violate Einstein’s equiv-

alence principle, a fundamental base for the well-tested general relativity.

By this principle, an observer falling into a black hole should experience “no

drama” when passing through the event horizon; free fall through the horizon

should be (neglecting tidal effects) indistinguishable from being in an inertial

frame of reference in flat spacetime. A firewall at the horizon would certainly

distinguish falling into a black hole from such an inertial frame. Other reso-

lutions ensuring that the equivalence principle is not violeted, have problems

of their own, however.

6 Rotating and Charged Black Holes

All discussion up until this point has been regarding Schwarzschild black

holes, with angular momentum J = 0 and charge Q = 0, but charged and

rotating black holes may also be of interest. The spacetime of the vacuum

surrounding a non-rotating, charged (or Reissner-Nordström) black hole is
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characterized by the Reissner-Nordström metric, given by

gµν =



















(

1− rs
r
+

r2Q
r2

)

c2 0 0 0

0 −
(

1− rs
r
+

r2Q
r2

)

−1

0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ



















(12)

in polar coordinates, where rs =
2GM
c2

is the Schwarzschild radius and

r2Q =
Q2G

4πǫ0c4
(13)

(using, as I will continue to do, the (+,−,−,−) signature for temporal and

spatial coordinates). The only result of adding charge to a black hole, it

seems, is to change the location of its event horizon, and accordingly the

firewall theory still applies. The charged black hole does however radiate

energy at a different rate on account of this new event horizon; the new

power law is [11]

P =
h̄c6

(

1− Q2

4πǫ0GM2

)2

240πG2M2
(

2 + 2
√

1− Q2

4πǫ0GM2 − Q2

4πǫ0GM2

)3 , (14)

which, since the Page time is dependent on the lifetime of the black hole,

would result in a modified Page time.

Rotating, or Kerr, black holes have a more interesting effect on spacetime.

The Kerr metric [12] for a black hole with angular momentum J can be
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written

gµν =



















(

1− rsr
r2+a2 cos2 θ

)

c2 0 0
(

rsra sin2 θ
r2+a2 cos2 θ

)

c

0 − r2+a2 cos2 θ
r2−rsr+a2

0 0

0 0 −(r2 + a2 cos2 θ) 0
(

rsra sin2 θ
r2+a2 cos2 θ

)

c 0 0 −
(

r2 + a2 + rsra
2 sin2 θ

r2+a2 cos2 θ

)

sin2 θ



















,

(15)

where a = J
Mc

. Evidently, the off-diagonal elements gtφ are non-zero, and the

result is an interesting phenomenon called frame dragging: given a particle

moving radially inward in the plane of rotation with velocity dr
dτ

= −v, one

can solve the geodesic equation d2xµ

dτ2
= −Γµ

αβ
dxα

dτ
dxβ

dτ
(where the Christoffel

symbols are Γµ
αβ = 1

2
gµκ(∂αgβκ + ∂βgακ − ∂κgαβ) as usual) to calculate the

angular push d2φ

dτ2
that the particle “feels” in the direction of rotation:

In this case, we are only concerned with the symbols Γφ
αβ. Additionally,

since the motion under consideration is radially inward, dθ
dτ

= dφ

dτ
= 0, and the

only remaining Christoffel symbols to compute are Γφ
rr, Γ

φ
tr, and Γφ

tt (note that

Γµ
αβ = Γµ

βα as a result of the symmetric spacetime metric). Further, since

the only nonzero gφκ are gφφ and gφt, and since the only nonzero partial

derivatives of metric components are with respect to r and θ, we have only

to consider the following two Christoffel symbols:

Γφ
rr =

1

2
gφt(∂rgrt + ∂rgrt) +

1

2
gφφ(∂rgrφ + ∂rgrφ), (16)
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which, since grt = grφ = 0, is zero, leaving us with only one relevant symbol:

Γφ
tr =

1

2
gφt(∂rgtt) +

1

2
gφφ(∂rgtφ). (17)

The inverse metric can be calculated to give gφt = rsra
c(r2+a2 cos2 θ)(r2−rsr+a2)

and

gφφ = 1
c2(r2−rsr+a2)

, which, combined with the partial derivatives and the fact

that θ = π
2
since the motion is in the plane of rotation, gives

Γφ
tr =

rsac

2r2(r2 − rsr + a2)
. (18)

dr
dτ

= −v is already known, leaving the time dilation factor dt
dτ

to compute

from the metric:

c2 =
(

1− rs
r

)

c2
(

dt

dτ

)2

−
(

r2

r2 − rsr + a2

)(

dr

dτ

)2

(19)

dt

dτ
=

√

(

1− rs
r

)

−1
(

1 +
r2v2

c2(r2 − rsr + a2)

)

, (20)

from which we can finally calculate

d2φ

dτ 2
=

√

(

1 + v2

c2

)

r2 − rsr + a2
(

1− rs
r

)

(r2 − rsr + a2)3

(rsac

r2

)

v. (21)

Frame dragging, however, does not directly affect the emission of Hawking

radiation. There is a different power law associated with Kerr black holes,
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though, given by [11]

P =
h̄c6

(

1−
(

Jc
M2G

)2
)2

1920πG2M2

(

1 +
√

1−
(

Jc
M2G

)2
)3 . (22)

The Page time is thus affected also in this case.

Another relevant trait of Kerr black holes is the location of the horizon.

Besides the obvious singularity at r = 0, the metric is singular also where

1/grr = 0 and where gtt = 0. The first of these condition is satisfied by the

surface

r =
rs +

√

r2s − 4a2

2
, (23)

which is a spherical event horizon somewhat closer to the singularity than the

Schwarzschild radius. The second condition is satisfied by another surface,

r =
rs +

√

r2s − 4a2 cos2 θ

2
, (24)

an oblate spheroid that touches the event horizon at the rotation poles. The

space between the two surfaces is the ergosphere, unique to rotating black

holes.

One of the main curiosities of the ergosphere is that within it the t and φ

coordinates switch, essentially resulting in frame dragging so extreme nothing

can rotate opposite the black hole. The ergosphere is not, however, a point

of no return; that purpose is still served by a spherical event horizon, which
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is the inner of the two surfaces calculated above. The main question relevent

to the firewall theory here is whether Hawking radiation is emitted from

the event horizon, the outer surface of the ergosphere, or somewhere else.

Theory suggests [13] that Hawking radiation from Kerr black holes can be

understood as a flux that compensates for gravitational anomalies at the

horizon, and that Hawking radiation, in the case of a Kerr black hole, still

originates at the event horizon. The firewall, if it exists, must then be there,

and the ergosphere can still be safely entered and exited.

7 Black Hole Evaporation Times

Equipped with the relevant power laws, it is now possible to calculate the

lifetimes of Reissner-Nordström and Kerr black holes. While these laws make

for quite complicated differential equations, the process can be made easier

by exploiting this fact: given two differentiable functions f(t) and g(t) for

which it is true that df

dt
/dg

dt
= f(t)

g(t)
, it follows that the ratio f(t)

g(t)
is constant.

This is not of use quite yet, but it can be easily proven:

df

dt
/
dg

dt
=
f(t)

g(t)
⇒ df

dg
=
f

g
⇒

∫

df

f
=

∫

dg

g
⇒ ln f = ln g+C ⇒ f(t)

g(t)
= eC , ∀t.

(25)

Let us first consider a charged black hole. Defining Θ = 1− Q2

4πǫ0GM2 lets
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the power law be rewritten

P = −dE
dt

=
h̄c6Θ2

240πG2M2
(

1 +
√
Θ
)6 . (26)

This black hole has rest energy E0 = Mc2 and energy from its charge given

by [14]

EQ =

(

1− 1

2

(

1 +
√
Θ
)

)

Mc2. (27)

We now assume that the proportion of Hawking radiation carrying away rest

energy is equal to the proportion of the black hole’s total energy that is rest

energy, and likewise for electromagnetic energy. Specifically:

dE0

dt
= −

(

E0

E0 + EQ

)

P ,
dEQ

dt
= −

(

EQ

E0 + EQ

)

P. (28)

It is immediately apparent that
dEQ

dt
/dE0

dt
=

EQ

E0

, and it thus follows from

the beginning of this section that the ratio
EQ

E0

= 1 − 1
2

(

1 +
√
Θ
)

is a con-

stant, and therefore Θ is constant, making the problem of calculating the

lifetime much simpler (physically, this means that the ratio Q

M
is constant).

The equation above for dE0

dt
= c2 dM

dt
can now readily be solved in the same

way as the Stefan-Boltzman-Schwarzschild-Hawking power law, but with a

multiplicative constant

Puncharged

Pcharged

(

E0 + EQ

E0

)

=

(

1
2
+ 1

2

√
Θ
)6 (

3
2
− 1

2

√
Θ
)

Θ2
, (29)
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giving a lifetime

tevap =

(

1
2
+ 1

2

√
Θ
)6 (

3
2
− 1

2

√
Θ
)

Θ2
t0 , Θ = 1− Q2

4πǫ0GM2
, (30)

where t0 is the lifetime of an uncharged, nonrotating black hole with the

same mass, as calculated in section 1. The dependence of evaporation time

on charge for a black hole of a given mass is plotted in figure 2. Evidently,

tevap asymptotically approaches infinity as the black hole approaches an ex-

tremal black hole (for which Q2

4πǫ0GM2 = 1). Such a black hole is forbidden by

Penrose’s weak cosmic censorship hypothesis [15], as computing the metric

for a black hole with such a charge indicates no event horizon surrounding

the singularity, resulting in a naked singularity [11].

In much the same way, for a rotating black hole with angular momentum

J , by defining Λ = 1−
(

Jc
GM2

)2
the power law may be rewritten

P = −dE
dt

=
h̄c6Λ2

1920πG2M2
(

1 +
√
Λ
)3 . (31)

By again exploiting the constant ratio between E0 and the (this time) rota-

tional energy EJ [14]

EJ =

(

1− 1

2

√

2 + 2
√
Λ

)

Mc2, (32)

the lifetime is again found to be a constant multiple of the uncharged, non-
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Figure 2: Charge of a Reissner-Nordström black hole (in units of 2M
√
πǫ0G)

versus its evaporation time as a multiple of t0.
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Figure 3: Angular momentum of a Kerr black hole (in units of GM2

c
) versus

its evaporation time as a multiple of t0.

rotating evaporation time:

tevap =

(

1
2
+ 1

2

√
Λ
)3 (

2− 1
2

√

2 + 2
√
Λ
)

Λ2
t0 , Λ = 1−

(

Jc

GM2

)2

.

(33)

Figure 3 shows the dependence of evaporation time on angular momentum

for a black hole of a given mass. Again, tevap asymptotically approaches

infinity as the black hole approaches an extremal black hole (in this case, for

which Jc
GM2 = 1).
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8 Other Proposals

Other solutions to the entanglement problem have been proposed. Besides

the firewall, there are two other approaches, resulting from the fact that the

forbidden entanglement presented by black hole complementarity can be seen

as requiring a violation of unitarity, the equivalence principle, or of quantum

field theory in its current form [10]. The firewall is the approach where the

equivalence principle is violated.

One solution is a lack of entanglement between a quantum of Hawking

radiation and all past Hawking radiation. This causes a loss of information

and thereby violates unitarity, and in fact is essentially a rejection of the black

hole complementarity that was formulated as a solution to information loss

in the first place. Another solution involves a reworking of current quantum

field theory, in such a way as to allow entanglement (between the particle-

antiparticle pair) to be lost more gradually, preventing the existence of a

firewall.

There do exist other proposed solutions outside of simply choosing one

of three princples to violate. Two of the more prominent proposals are the

“fuzzball” picture of black holes in the context of string theory, and the idea

that the particle-antiparticle pairs produced near the horizon are connected

by wormholes [16].
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9 Conclusions

The firewall theory and other resolutions to the entanglement problem result-

ing from black hole complementarity would be a challenge to verify experi-

mentally, not only because of the lack of readily available, easily observable

black holes, but also because they deal with reality within the event horizon,

which is theoretically unobservable from the outside universe. Nonetheless,

they may have further implications in the thermodynamics of black holes,

the dynamics of their collisions, and in future quantum theories of gravity.

The mathematical foundation for the entanglement of quanta of late

Hawking radiation with all past Hawking radiation is a rather simplified “toy

model” of a black hole system, with a small number of accessible states and

a definite formation time after which the black hole absorbs no new matter

or energy, simply dissolving through Hawking radiation [8]. This does not

account for cases where, for example, two black holes more than halfway

through their lifetimes merge into a single black hole with a significantly

longer lifetime, which could provide new insight on the issue.
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