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Introduction to Sequences and Series 

I. Sequences  

A sequence is a list of numbers in a definite order.  While finite lists are vitally important in everyday life, 
in calculus we concentrate on infinite lists.  This prospect causes an immediate problem.  In principle, 
finite lists can always be written down for inspection.  There is not enough time or paper to write down an 
infinite list so we have to resort to some trickery. One standard method (there are others) depends on the 
characteristic of ordering.  One may say, for instance, that among the entries in the list, there is a first, a 
second, a third and so on.  The idea, then, is not to try to write down all the entries, but rather to provide a 
formula for computing any particular entry.  A formula might look like this:  22 += nan  

Notice the formula for the entries in a sequence is nothing more than a function whose arguments are 
restricted to integers, usually the positive integers beginning with 1. 

Someone who wants the 10th entry in this list just computes:  1022102 =+  

Someone else who wants the 3874th entry in the list computes: ( ) 878,007,1523874 2 =+  

The notation na describes a “generic” entry in the list, the nth entry, where n is any positive integer.  
Given such a formula, a user may write down as many (but only finitely many) of the entries as are 
desired.  Sometimes a more casual version of the formula method is used.  For example, the “even 
integers beginning with 14” would describe the sequence { },...18,16,14 .  This partial list, by itself, 
describes to most people what sequence is under discussion.  While the structure of that sequence may be 
clear to everyone, a textbook problem is liable to give one or the other of the previous descriptions and 
then demand that the student construct a formula for subsequent manipulation.  In this case, for example, 
a textbook problem would be asking for the formula 122 += nan for this sequence. 

(WORK EXERCISE 1) 

II. Convergent Sequence?  

Why the interest in infinite sequences?  One reason is the question of approximation.  Consider the 
sequence { },...,...,414.1,41.1,4.1,1 nsS = , a casual method of describing the sequence of successive 

decimal approximations to 2 .  Because the entries, ns , in this sequence are getting closer and closer to 

a target, 2 , we say the sequence converges to 2 .  A more precise description of the notion of 

convergence says we can make ns−2 as small (but not zero) as we please by going out far enough in 
the sequence. 
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Notice it is the long-term behavior of the sequence that determines its convergence.  For instance, the 
sequence { },...,...,414.1,41.1,4.1,1,3,76,11 ns still converges to 2 , even though the front end of the 

sequence is messed up.  There are “trick” methods to verify that a given sequence converges without 
identifying the target.  But, we will proceed with the method of actually working out the target, a value 
that is called the limit of the sequence. 

(WORK EXERCISE 2) 

III. Series 

Now, we want to use one sequence to generate another, and not just for whim. Look at the sequence 
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The answer might be clear; these are the decimal “additive corrections” that, beginning with 1, produce 
our earlier sequence { },...,...,414.1,41.1,4.1,1 nsS = , the decimal approximation to 2 .  The nth decimal 

digit in this expansion is nd .In other words, 
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Thus, we use the entries in one sequence to produce, by successive additions, the entries in a second 
sequence.  It is not a bad idea to think of these successive additions as a sequence of “correction” to the 
sum, just as in the case of the decimal expansion for 2 .  There is a standard notation for this sequence 
of corrections.  If the first sequence is { },...,...,,., 21 naaaA =  then the second sequence could be 

written 
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iaaaaaaaS or even just ∑
∞

1
ia , the common series notation. 
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The new sequence of partial sums is generated by the infinite series which is the sum of the terms in 

sequence A.  In certain cases, it is possible, with some labor, to find a formula for ∑=
n

in as
1

.  We hope 

such a formula allows us to work with the series. Usually, it is too difficult to find formulas like this and 
we instead, employ another method to determine if a series has a sum.  One thing is pretty clear…if the 
terms, na , in the original sequence are to be used as additive corrections, they must be getting smaller 
quickly.  Otherwise, the successive additions will make the sum jump around too much! 

(WORK EXERCISE 3) 

IV. Sequences and Series: Don’t confuse them! 
Although divergent series and sequences find use in more advanced work, our main focus lies in those 
that converge.  Many students are confused by the variety of methods used to verify convergence.   

There is a single fundamental principal that controls all approaches to convergence, whether we are 
discussing sequences or series.  That principal speaks to the convergence of sequences.  It becomes 
elaborate when applied to series.  The principal needed deals with sequences that maintain their direction.  
These are sequences that get steadily larger or steadily smaller.  Such sequences are called “monotonic. 

 

 

The principal speaks to two distinct characteristics of a sequence.  It must be monotone and it must be 
bounded in the correct direction.   

NOTE:  Remember, this principal only applies to sequences.  The sequence of partial sums we discussed 
is a decimal expansion but we have no formula for the nth entry in order to test the limit of the sequence.  
The remaining tests in our textbook, which apply only to infinite series, are dependent on this basic 
principal. 

(WORK EXERCISES 4) 

V. Geometric Series Applications 
There are many practical problems modeled by the geometric series.  Recall, each term of a geometric 
series is a constant multiple of the previous term.  From our previous discussion, we know if the sequence 
of partial sums generated by this series converges, then the series converges.  In the geometric series the 
behavior of nr , the constant ratio, as ∞→n determines the behavior of the geometric series. 

 
(WORK EXERCISES 5 and 6) 

Any monotonic decreasing sequence that is bounded below must converge.Any 
monotonic ascending sequence that is bounded above must converge. 

Geometric Series 

Let r and a be real numbers.  If 1<r , then 
r
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1 .  If 1≥r , then the series diverges. 
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Math 112 F24 Lab 7 Exercises   Name: ____________________________ Section:_______ Score: ____ 

Read through this lab and work the corresponding problems. Students may work cooperatively but must 
submit their own set of Lab Exercises. No calculators. 

1.Consider the sequence { }...,5,3,1  (a) Write a simple verbal description of this sequence. (b) Find a 
formula for the nth entry in this list. 

 

2. (a) Write a few entries in the sequence of successive decimal approximations for 1/3. 

 

(b)   Write a formula for the nth entry in this list.  (Hint: .9 = 1 – 1/10, .99 = 1 – 1/100, .999 = 1 – 1/1000. 
What can you do to these values to yield the sequence in 2(a)?) 

 

 

3.  (a)  Find the first 5 terms of each sequence defined below: 

n
an

1
= = 

2

1
n

bn = = 

(b)  What can be said about the convergence of each sequence? Justify your answer by showing limits. 

 

(c)  Find the first 5 partial sums for each related series and write them as a sequence of partial sums, nS  . 

i.) ∑
∞

=1

1
n n

 

ii.) ∑
∞

=1
2

1
n n

 

(d)  Write a statement concerning the long-term behavior of each sequence of sums in (c). 

i.) 

 

ii.) 
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Math 112 F24 Lab 7 Exercises (cont.)                                 Name: ____________________________ 

4. (a) Write out the first 10 entries in the sequence of decimal additive “corrections” to π .  The start 
value will be 3.  

 

(b) Now, write out the corresponding sequence of partial sums of those decimal corrections. 

 

(c)  Which of these two sequences converge? 

(d)  Fill in the blank: Decimal expansions ___________________ (always, sometimes, never) converge. 

5.  The Bouncing Ball (geometric series problem) 

A certain ball has the property that each time it falls onto a hard, level surface it rebounds to 75% of its 
previous height. Suppose this ball is dropped from a height of 10 feet above the floor. 

(a)  Sketch the ball’s vertical travel for several bounces. Vertical is ball height, horizontal is bounce on the 
floor. 

 

 

 

 

(b)  How far has the ball traveled when it touches the floor. (Consider up and down as positive distance.) 

i.)  the first time? 

ii.) the second time? 

iii.) the third time? 

(c)  Suppose the ball continues to bounce indefinitely.  Use the information in (b) to find the proper 
formula for the sum, then find the total distance traveled by the ball.   (Hint: The total distance may be 
written as a single value plus a geometric series.) 
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Math 112 F24 Lab 7 Exercises (cont.)                                     Name: ____________________________ 

6.  When money is spent on goods and services, the people who receive the money also spend some of it.  
Those who receive the twice-spent money will spend some of that, and so on.  Economists call this chain 
reaction the “multiplier effect.”  Suppose the IRS sends each taxpayer a rebate of $300 and that each 
recipient spends 90% of the money received (this is called the “marginal propensity to consume.”) 

(a)  Fill in the table that shows movement of the money through five rounds of spending. ($300 is 0a ) 

n 

Number of rounds of spending 

na  

Amount spent on each round 

nS   

Cumulative sum of spending 
through this round 

0   

1   

2   

3   

4   

5   

 

(b)  Assume this spending pattern continues.  Write a geometric series that models the amount of money 
that moves through the economy beginning with the $300 payment. 

 

 

 

(c)  Calculate the total amount of spending that is generated by the $300 payment. 

 

 

 

(d)  Economists call the ratio of the total spending to the original payment the “multiplier.”  Calculate the 
multiplier for the example above.  This tells you how many times the original payment has “turned over.” 
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Math 112 F24 Lab 7 Exercises (cont.)                                     Name: ____________________________ 

(e)  If the marginal propensity to consume is 95%, 

      i.) Calculate the total amount of spending that is generated by the $300 payment.  Show how you 
know. 

 

 

     ii.) Find the multiplier. 

 

 

 

(f)  How does this idea of the “multiplier effect” justify the government giving such a rebate to taxpayers? 

     

 

Helpful Calculator Stuff: 

We can get a look at the values of both the  

sequence 
n

an
1

=  and its related series ∑
∞

=1

1
n n

 

Clear y= and lists:  2nd , MEM, 4, enter 

Bring up table as shown: STAT, ENTER 

Arrow over and/or up to highlight 1L  

2nd, LIST, OPS, seq(x,x,1,100,1), ENTER   

This gives us the #s in 1L  

Arrow right and up to highlight 2L . Type: 

1  ÷    2nd 1L , ENTER This gives you the terms in the sequence 
n

an
1

=  

Arrow right and up to highlight 3L . Type:  2nd, LIST, OPS, 6, ENTER, 2nd, 2L , ENTER 

1L  2L  

terms 

3L  

partial sums 

1   

2   

3   

4   

5   

6   

7   


